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Deflections of Reinforced Beams Using Variable
Moment of Inertia

By
Wafa Abdul-Majeed Mohammad

Supervisor
Prof. Raed M. Samra

Abstract

This thesis proposes a procedure for predicting immediate deflections of
reinforced concrete beams subjected to uniformly distributed loads by using
variable moment of inertia along the beam length. A comparison is made between
the results obtained by theéis approach and those determined by ACI 318M-99.

Various parameters affecting immediate deflections of beams are considered.
Those include effects of span, L; tension steel ratio, p; compression steel ratio, p’;
applied load, 'w;concrete compressive strength, f; steel yield st_:rength, fy; beam
types and beam cross-sections.

The adequacy of the proposed approach is checked by comparing calculated
immediate deflections with those calculated according to the ACL. It is shown that
the ACI provisions are more conservative almost in all cases than the proposed
procedure, except in continuous beams with high ratios of tension steel.

The difference between the results of the two approaches is éffected by

several parameters. The study demonstrates that both approaches give very close

results in the cases of simply supported beam, cantilever beam 2-span continuous
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beam and 3-span continuous beam with tension steel ratio p <0.75 ppax. In other

cases the results are still close.
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1.Introduction

1.1 General

Structural designs are based on economy, strength, serviceability and
durability. Economy should be the primary objective of a design, whereas
strength and serviceability must be ensured in a design. Since we do not have
adequate technical information on durability, it is often satisfied in an empirical
manner.

It has been the belief of enginecers of the past generation that the above
design requirements are best satisfied by controlling working siresses.
Concrete with a compressive strength f" of 11 to 21 MPa (1.5 to 3.0 ksi) and
reinforcement with a yield stress of 230 to 280 MPa (33 to 40 ksi) were
predominant in the earlier decades of the past century. The use of these
materials with conservative allowable stresses, along with the working stress
method resulted in large stiff sections having small deflections
(Purushothaman, 1984).

The widespread use of the strength design method in recent years, taking
into consideration the nonlinear relationship between siress and strain in

concrete, has resulted in smaller sections than those designed by the working

stress method. The use of steel up to a yield strength of 560 MPa (80 ksi) and

the use of high strength concrete result in smaller sections and a reduction in
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the stiffness of the flexural member and consequently increases its deflection
(Hassoun, 1998). Therefore, deflections and deflection cracking have become
more severe problems than they were a few decades ago (McCormac, 1986). It
is important to recall that loads imposed on structures produce forces in
individual members and hence stresses. These stresses, in turn, result in
strains, deformations and deflections, the behavior of a truss is a typical
example of this process and it is clearly evident that deflections are the end
products of a loading process (Purushothaman, 1984).

The permisﬁble deflection is governed by the serviceability requirements
for the structure, such as the amount of deformation that can be tolerated by the
interacfmg components of the structure. Excessive deflection of the member
may not in itself be detrimental, but the effect on structural components that are
supported by the deflecting member frequently determines the acceptable

amount of deflections (Wang and Salmon, 1998).
1.2 The Deflection Problem

Proper design of reinforce;d concrete beams requires that they should have
adequate stiffness as well as strength. Under service loads, deflections must be
limited so that attached nonstructural elements, (e.g. partitions, pipes, plaster
ceilings and windows) will not be damaged or rendered inoperative by large
deflections.

Design for deflection has not kept pace with design for strength, since
deflection computations are internally difficult and time-consuming due to the

following (Purushothaman, 1984):

of Thesis Deposit




The influence of creep, shrinkage, temperature and also cracking.
Deflection computations must be reasonably accurate, since overestimates
and conservatism can lead to large size structural members.

In the past building materials such as lime and mild steel were more
pliable and the allowable stresses were lower. With the advent of high
strength steel and concrete, allowable stresses have increased, shrinkage
and creep effects have become important, and hence deflection check has
become necessary even when structural components are designed by the
working stresses method.

Compression steel reduces creep and shrinkage deflections up to 20

to 30% of the short term deflection.

Excessive deflections indicate a tendency towards undesirable vibrations.
The age of concrete at time of loading has an important effect on
deflections.

Ambient weather and initial curing have significant influence on
subsequent deflections.

Incremental and total deflection limits should both be set for control of
deflections.

Distress of non-load bearing, nonstructural elements attached to flexural
elements should be considered.

Large deflections can result in failure due to instability, even when the

stresses are within the specified limits.
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- The assumption of a fully cracked section is usually conservative. The
transformed area of reinforcing steel in uncracked sections may not
always be ignored as it can increase the moment of inertia.

. The modulus of elasticily and modulus of rupture should be realistically

estimated and used.
1.3 Deflections and Design Values

Excessive deflections and deformations can impair the appearance and
efficiency of a structure and cause discomfort or alarm to the occupants. The
maximum deflections which are permitted by the ACI Code under normal
working loads are given, usually in terms of span or height. Experience has
indicated that deflections are likely to be satisfactory if certain limiting span to
effective depth ratios are not exceeded (Syal and Goel, 1984).

Limitations on deflection are somewhat atbitrary, historically L/360 has
been the accepted limit to prevent the cracking of plaster ceilings. Other limits
should be considered as guidelines, with the designer having the responsibility
for evaluating the possible adverse effect of excessive deflection in any given
situation.

A report by ACI Committee 435 (Patk and Pauly, 1975) on allowable

deflections classifies effects of deflections under four broad headings, as

follows:




1.3.1 Sensory acceptability

Sensoty acceptability tends to be a matter for personal judgment and
depends a great deal on the social background of the users and the type of
structuré. Under this heading come visual effects such as sagging beams or
droping cantilevers, tactile effects such as vibration due to dynamic effects of
live load and wind, and auditory effects sﬁch as noise from vibrations.
Deflection limits on sensory acceptability are difficult to establish because of
the variability of personal opinion.
1.3.2 Serviceability of the structure

Serviceability limits are related to the intended use of the structure.
Examples in this category are roof surfaces that should drain water, floors that
should remain plane (e.g., gymnasia), and members supporting sensitive
equipment. Deflection limits on serviceability are easier to define.
1.3.3 Effect on nonstructural elements

Deflections must be limited to prevent cracking, crushing, or other types
of damage to nonstructural elements such as walls, partitions, and ceilings.
Deflections should not prevent moving elements such as doors and windows
from operating properly. Thermal and shrinkage effects may be important, as
well as deflections due to gravity and lateral loads. The deflection limits to be

applied depend on the type of nonstructural element and the method of

installation.
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1.3.4 Effect on structural elements

Deflections may need to be limited to prevent the structural behavior from
being different from that assumed in the desigh. Examples in this category are
deflections causing instability such as arches and shells or long columns,
deflections causing a change in thé stress system such as a change in the
bearing area due to beam end rotation, and deflections causing dynamic effects
that increase stresses such as resonant vibrations due to moving loads. When
possible, the effects of deflections on the structural behavior should be included

in the design of the element.
1.4 Approaches for Controlling Deflections

1. The use of compression steel and limiting the tension steel percentages in
reinforced members. This is a method of using relatively small tension steel
percentages in the design of reinforced concrete members (which in turn results
in relatively deep beams to minimize deflections. The tension steel ratio
0.18f'/f, was shown to be less than half the balanced ratio (uitimate strength
design), and was judged to be sufficiently low to minimize deflection problems
in most cases.

Alternatively, structural members will normally be of sufficient size so
that deflections will be within acceptable limits when the tension steel
reinforcement used in the positive moment zone does not exceed the following
percentages of that in the balanced condition: for member not supporting or not

attached to nonstructural elements likely to be damaged by large deflections—
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35 percent for rectangular and 40 percent for Tor box beams, of the balanced
ratio; and for members supporting or attached to nonstructural elements likely
to be damaged by large deflections—25 percent for rectangular and 30 percent
for Tor box beams of the balanced ratio.

The use of compression steel is very useful in reducing time-dependent
deflections (Branson, 1977).
2. It is possible to design a structural element that satisfies the deflection
criteria by limiting the span/depth ratio (Purushothaman, 1984). The use of
maximum span-depth ratios and minimum depth is essentially an important
approach based largely on experience, even when analytical methods are vsed
to derive such limiting values. The calculations are based on selected
allowable deflections on analytical procedures for determining span-depth
ratios (Branson, 1977). In general, it is the collapse limit which governs the
size of the member, and only in rare cases, such as very long spans, do the
deflection criteria control the structural proportions.

With regard to deflection control, flexural members may be classified into
two groups:

(i) Those supporting nonstructural elements which are likely to be

| damaged.

(ii) Those which do not have nonstructural elements which are likely to

be damaged.
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In the first case the total deflection and incremental deflections after the
erection of partitions, etc. should be checked, In the latter case, the total
deflection alone needs to be checked (Purushothaman, 1984).

The minimum thicknesses of beams and one-way slabs shall be in
accordance with Table (1.1).

Table 1.1. Minimum thickness of beams or one-way slabs unless
deflections are computed *

Minimum Thickness, h
Simply One end Both ends

supported { continuous continuous Cantilever
Members not supporting or attached to partitions or other

Member construction likely to be damaged by large deflections.

Solid one-way slabs L/20 L/24 1./28 L/10

Beams or ribbed
one-way slabs L/16 L/18.5 L/21 L/8

* ACI 318M-99 Code, Table 9.5 (a).

This method of controlling deflections is simpler than the other method in
which calculated and allowable deflections are compared. This approach
usuall); must be quite conservative and/or with limited applicability. This is
increasingly true as deflection becomes more critical (Branson, 1977).

3. The use of calculated and allowable deflections. The proper control of
deformations in structures involves a consideration of various displacements,
deflections, rotations, and both amplitude and frequency of vibrations, ete.
compared with usable limits based on integrity, serviceability, esthetic, and
physiological réquirements. However, the primary approach used by most

engineers refers to placing limits on computed deflections.
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The following allowable deflections Table (1.2) apply to reinforced

concrete building members when deflections are computed by the 1999 ACI

Code method.

Table 1.2. Maximum permissible computed deflections *

Type of Member

Deflection to be Considered

Deflection Limitation

Flat roofs not supporting or
attached to non structural
element likely to be damaged
by large deflections.

Immediate deflection due to
live load L

L/180

Floors not suppotting or
attached to non structural
elements likely to be damaged
by large deflections.

Immediate deflection due to
live load L

L./360

Roof or floor construction
supporting or attached to non
structural elements likely to
be damaged by large
deflections.

Roof or floor construction
supporting or attached to non
structural elements not likely
to be damaged by large
deflections.

The part of the total
deflection occurting after
attachment of non structural
elements (sum of the long-
term deflection due to all
sustained loads and the
Immediate deflection due to
any additional live load).

L/480

11240

*ACT 318M-99, Table 9.5 (b).

4. By appropriate construction practices. In addition to the use of conctete

with maximum stréngth and stiffness properties and minimum creep and

shrinkage properties, deflections can be minimized in other ways by

appropriate construction practices. One example of this is to delay form

removal (to minimize creep deformation) as long as possible, and then to install

partitions as late as possible, since this will tend to minimize the creep and

‘shrinkage deflection that could cause damage to the partitions (Branson, 1977).
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2.Literature Review

2.1 Introduction

With the present day use of higher strength concrete and reinforcing steel,
the strength or load-factor method of design result in shallower sections
(Hassoun, 1998). The problem of predicting and controlling defections of
reinforced concrete flexural members, under service loads, has thus become
increasingly important since the 1950s (Ferguson, 1973). As such setious
comprehensive Studies of the deflection problem in reinforced concrete structure

began about fifty years ago.

2.2 Deflection of Reinforced Concrete Beam

Many researchers have investigated the trends that conirol the deflection
problem in reinforced concrete structures. Some of them considered the
deflection prediction for concrete beams, others discussegll the causes of wrong
estimation of deflection, while other researchers éonsidered long-term
deflection of reinforced concrete beams under constant Ioadél. 561

33

2.2.1 Deflection prediction for reinforced concrete beam

Prediction of immediate and long-term deflections is important in the

P

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit
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However, unsatisfactory performance such as excessive deflection or cracking
occurs more frequently than structural collapse (Ghali and Azarnejad, 1999).
Therefore, many studies have been made to predict immediate and long-term
deflections.

Sherif and Dilger (1998) critiﬁally reviewed the provisions of several
codes for the deflection calculations of normal and high strength reinforced
concrete beams. Both short and long-term deflections are discussed. Tests are
used to assess the calculation methods suggested by the codes. These methods
ate the effective moment of inertia approach, the mean curvature approach
which determined the deflection of a member by integrating the curvature @ at
a number of sections and the bilinear method which based on the observation
that, for the serviceability limit state, the moment-deflection relationship may
be approximated by a bilinear relation. A parametric study is carried out to
investigate the effect of the level of loading, shape of bending moment, and
reinforcement ratio on the predicted deflection.,

The following are the most important conclusions for instantaneous and
long-term deflections:
1. The main shortcoming of the effective moment of inertia approach is that it
does not account for the shape of the moment diagram along the member in
determining the effective moment of inertia. The mean curvature approach

does this indirectly by calculating the deflections by integrating the mean

curvature at several sections along the beam.

Center of Thesis Deposit Q
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2. Tor beams with a low reinforcement ratio and an applied moment close to
the cracking moment, both the effective moment of inertia approach and the
bilinear method underestimate the deflections considerably.
3. Although the bilinear method includes the least computational efforts when
compared with the effective moment of inertia or the mean curvature method,
the accuracy of the predicted deflections is not substantially affected, thus,
making the bilinear method an attractive one for quickly estimation of
deflections.
4. The ACI 318M-99 approach for calculating the long-term deflections
overestimates the ratio of long-term to initial deflections, especially for high
strength concre;te- beams. Sherif and Dilger proposed to apply a correction
factor to the long-term deflection multiplier of the ACI 318M-99 Code which
accounts for the effect of concrete strength on long-term deflection.
5. The mean curvature approach and the bilinear method result in long-term
to initial deflection ratios that agree very well with test results.
6. For beams without compression reinforcement an increase in the concrete
strength results in a decrease in the ratio of the long-term to initial deflections.
However, for beams with compression reinforcement, the ratio of long-term to
initial deflections is independent of concrete strength.

Ghali and Azernejad (1999) developed a rational analysis model which
satisfies the requirements of equilibrium and compatibility that reduced the
error in prediction of immediate and long-tetrm deflections of reinforced

concrete members. They compared this model with experimental values
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reported by Christiansen (1988), Corley and Sozen (1966), and Bakoss {1982}
et al. The study showed that deflection of a member can be determined more
accurately from the values of the mean curvature at a number of sections using
simple geometridal deflection-curvature relationships and that long-term
deflection caﬁnot be predicted accurately by the use of _the multiplier A used by
the ACI 318M-99 code because it does not include several parameters that
influence deflection. The study indicates the order of magnitude of the change
of deflection with change of concrete strength.

2.2.2. Deflection calculation for reinforced concrete structures.
Why Do We Sometimes Get It Wrong?

The simplified procedures contained in ACI 318M-99 for calculating the
deflection of beams and slabs are inadequate in some situations. The calculated
deflection is often significantly less than the actual deflection, and
serviceability problems resulting from excessive deflection are not uncommon
for structures designed in accordance with the code (Gilbert, 1999).

Gilbert (1999) presented and evaluated three alternative methods for
improving the calculation procedure adopted by ACI 318M-99. Alternative
i,accounts for the breakdown of tension stiffening under long-term or cyclic

loads, while, alternative 2 includes the shrinkage induced tension in the
estimation of the cracking moment. Alternative 3, however, accounts for the
actual creep and shrinkage and characteristics of concrete, by calculating the
creep déﬂection and shrinkage deflection separately, and by so doing, can be

used to obtain reliable estimates of the final deflections.
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Stewart (1996) developed a probabilistic model to estimate immediate,
creep, shrinkage deflections and the probabilities of serviceability failure of
reinforced concrete beams sized according to the span-to-depth ratio
serviceability requirements of ACI Code. The results suggest that probabilities
of serviceability failure are not consistent actoss a range of beam spans and that
the span-to-depth ratio serviceability requirement specified in the ACI Code
produce significantly different risks of serviceability failure.

Ghali (1993) indicated that calculating the immediate and long-term
deflections of reinforced concrete members can be inaccurate for two main
reasons. The first is the uncertainty o.f the material parameters: elasticity
modulus, creep coefficient, shrinkage and tensile stress of concrete. The
second is the use of an inadequate method of analysis. The study showed that
the approach of the code yields accurate prediction of the immediate deflection
in some cases, but this is not the case in other practical applications, for e.g.,
when the reinforcement ratio is low, when the maximum moment is not
substantially greater than the cracking moment and when the bending moment
is constant over the major part of the member. No alternative equation is
suggested for I, because such an equation is dispensable. The following
changes to the ACI 318M-99 Code are suggested:

1. The equation for the effective momént of inertia is to be replaced by an
equation for the mean curvature @,
2. The equation for multiplier A is to be omitted. Instead, the requirements of

~ compatibility and equilibrium in the analysis are to be stated in the code.
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2.2.3 Deflections of reinforced concrete beams under constant loads

Deflection analysis of concrete structures is relatively complex subject of
structural engineering. The main issue herein is the concrete material behavior,
with which researchers associate parameters such as concrete mix proportions,
humidity, temperature, size and load duration. Further technical difficulties
arise due to the spatial and temporal variations of concrete properties and the
differences in concrete deformation behavior under tension and comptession
(Alwis, 1997).

Alwis (1997) proposed a method of constructing a time-dependent
bilinear moment-curvature curve for reinforced concrete beams and
demonstrated its use for estimating long-term deflection of statically
determinate beams under constant loading. The moment-curvature relationship
defined herein is meant for a beam length that is subjected to a constant
moment profile as opposed to a section subjected to a varying moment. The
time-dependent concrete material behavior is assumed to be characterized by
the shrinkage strain and an effective modulus. The beam behavior is then
derived by considering the uncracked and fully cracked section. A linearized
moment-curvature relationship is adopted for the cracked beam segments in
order to represent the tension stiffening effect.- The proposed moment-
curvature description formally links the load-dependent deformation to
shrinkage which is fundamentally a stress-independent deformation measure.
Similai*ly, the stress-dependent deformation of the concrete elements due to

instantaneous and creep effects is formally linked to the beam deformation

- Center of Thesis Deposit
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under zero loading. This is a departure from the current approaches of
calculating separate deflection terms based on shrinkage and effective stiffness,
where the fundamental stress-independent and stress-dependent deformation
measutes are considered separately when calculating deflections.

Nie and Cai (2000) developed an analytical model that incorporates time-
dependent effects (creep and shrinkage) to predict the long-term deflection of
cracked reinforced concrete beams under sustained loading. The deflection
model included both bending and shear effects. Experimental studies were
conducted to vetify the analytical model. It showed that the time-dependent
deflection increment under sustained loading for a durafion of three months
varied from 48 to 88% of the initial deflection and that temperature and relative
humidity might have significant effects on the time-dependent deflection
increment. The study established a method of calculating the creep coefficient
¢ based on the strain measurements. This provides an approach to predicting
and calibrating the values of ¢ specified in code specifications. The simplified
calculation of ACI 318M-99 predicts larger time-dependent deflection than test
measurements. It is noted that the analytical results were verified with the
specimens that have a reinforcement ratio of 1.42 or higher. Nie and Cai
concluded that for members with low reinforcement ratio, the contribution of

concrete stiffening may be significant and ignoring the tensile strength of

concrete may be inappropriate.
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3.Background and Theoretical Survey

3.1 Introduction

It should be emphasized that the minimum thicknesses shown in Table
(1.1) proposed by the ACI 318M-99 apply only to members not suppotting or
attached to partitions and other constructions likely to be damaged by
deflection. When a large deflection is likely to cause such damage, it must be
computed whether or not the minimum thickness requirement is satisfied.

The practicing engineer can expect deviations greater than 30 percent
between predicted and measured deflections of beams constructed under actual
field conditions. A study of deflections of reinforced concrete beams must
account for the instantaneous elastic deflections as loads are first applied, as
well as for the long-term deflections that develop due to creep and shrinkage
and continue to increase over a period of several years. Under a constant value
of load, by the time long-term deflections reach their maximum value, they are
generally of the order of twice the magnitude of the initial elastic deflections

(Leet, 1997).

3.2 Short—Tefm Deflection

Elastic theory equations for deflections assume linear behavior between

stress and strain are used in calculating instantaneous deflections caused by
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undergoes some increase in strain and stress because of the decreased moment
lever arm with time.

2.. Shrinkage of Concrete. Concrete shrinkage causes curvatures and
deflections in the same direction as those caused by gravity loading. Shrinkage
and creep defiections are complementary, their combined value estimated in
approximate calculations with a single time-dependent factor applied to the
initial deflection. Such a procedure is used in the ACI 318M-99 Code.

3. Formation of new and widening of earlier cracks. Laboratory tests
showed that the formation of new cracks during sustained loading seems to
depend on the development of earlier cracks during the initial loading stage.
About half of the cracks occur at initial loading and the remainder during
sustained loading,

4. Relaxation of tensile stresses in concrete. Tensile stresses in the concrete
betwe_en cracks will be reduced by relaxation, resulting in an increase in
curvature and deflection with time. It has been shown that the long-term
curvature due to creep of concrete in tension, as a percentage of the total creep
curvature, maj’ increase from about 10 percent for high reinforcement
percentages to the theoretical value of 50 percent for unreinforced (uncracked)
concrete.

5. Movement of the neutral axis. The dominant effect of movement of the
neutral axis is downward due to creep.

6. Compression steel. Compression steel has the effect of significantly

reducing both creep and shrinkage deflections, Such reinforcement is
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advocated by some engineers for no other reason than deflection control,
especially in cantilever beams and slabs and other cases where deflections are
frequently critical or may be critical.

7. Effect of repeated load cycles. The effect of repeated loading on the time-
dependent response of simply and doubly reinforced beams has been studied
and detailed calculations to take this effect into account normally require more
information than is usually available.

8. Moment redistribution due to cracking, creep and shrinkage in
statically indeterminate structures. This combined effect in statically
indeterminate  structures causes additional initial and time-dependent
deflections that can readily be taken into account by numetrical procedures.
The combined effect will conttibute to the total deflection normally by a few

percent.
3.4 The ACI-Code Approach to Deflection Istimation

The first ACI code provision on deflections, other than load tests,
appeared in 1963, with an expanded provision included in the 1999 ACI code.
The codes take an overall approach in terms of the immediate deflection plus
the expected overall percentage increase with shrinkage and time effect. The
immediate deflection which is the starting point is quite sensitive to whether
the member is uncracked or cracked and if cracked how severely cracked, and

shall be computed with the modulus of elasticity E, for concrete and with the

effective moment of inertia I, (ACI 318-99).
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deflections must take these variations into account (McCormac, 1986). Today
the ACI 318M-99 Code uses a formula developed in 1963 by Branson. This
empirical expression is used for the effective moment of inertia of any
particular cross section of a beam. This moment of inertia is an average value
and it is a function of the bending moment, section properties and concrete
strength in a form that includes the extent of cracking caused by varying
moment throughout the span. The effective moment of inertia of the concrete

section is given by:

e = Mo/ Mg +[1-(Mo/M) I <1, (3.1)

Where:
M, = cracking moment = f; L/y,

f, = modulusof rupture = 0.7 +/ f.' MPa
M, = maximum service load moment acting at the condition

under which deflection is computed.

I = moment of inertia of gross section (without considering the
steel).
I« = moment of inertia of transformed cracked cross section.

Equation (3.1) should be used when 1 < M, /M, <3. If M,/ M, >3
the cracking will be extensive and I, can be taken equal to [o,. If M,/ M, <1,
no cracking is likely and I, can be taken as equal to I, (Leet, 1997).
3.4.2.1 single value of effective moment of inertia for practical use

As an approximation, a single value of effective moment of inertia is

suggested for practical use when the variable I results from the variation in the




and Salmon 1979).

1. Midspan value alone:

L = In (3.2)

24
extent of tension concrete cracking. Three methods have been suggested (Wang

Where I, is the effective moment of inertia at midspan for simply
supported and continuous spans, and at the support section for cantilevers.
This is the simplest method.

2. Weighted average:

In this method the adjusted I is obtained by weighing the moments of
inertia in accordance with the magnitudes of the end moments. The following
| weighted average expression has been recommended by ACI commitiee 435 as
% giving a somewhat improved result over the use of the midspan value alone.
| For spans with both ends continuous:

Averagel, = 0.7, + 0.15 (I + 1) (3.3)

For spans with one end continuous:
Averagel, = 0.85[,+0.151, (3.4)

3. Simple average:
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Average I, = (0.5 (o1 + Ip) + 1,)/2 (3.5)
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Where I, and I;; are the effective moments of inertia at the two ends of
the span. The use of both I, and I, is appropriate only when there are end
momments at both ends.

For uniform loading on continuous spans Eq. (3.3) representing
weighted average is slightly more accurate than using the midspan value only,
but for concentrated loads it is less accﬁrate. When a simple average value is
used as permitted by ACI 318M-99, it should be done in accordance with Eq.
(3.5), rather than taking the sum of I,,;, L1, and Ig; and dividing it by three. For
a single heavy concentrated load, averaging reduces accuracy. In this case Eq.
(3.2) representing midspan value alone should be used in such cases.

3.4.3 Short-Term deflections in design

Throughout the history of reinforced concrete construction, computation
of short-term deflection has usually involved using either transformed cracked
section or gross uncracked section. In either case this equation is suitable for

short-term deflection calculations (Wang and Salmon, 1998).

A = By (MLYE]L) (3.6)
Where:
fa = coefficient based on load and support conditions

I, = effective moment of inertia

E. = modulus of elasticity of concrete, E. = 4700/ f.' MPa

rdan - Center of Thesis Deposit
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344 Long-Térm deflections in design

Long-term or sustained loads, however, cause large increases in the
deflections due to shrinkage and creep. The factors affecting deflection
increases include humidity, temperature, curing conditions, compression steel
content, ratio of stress to strength and the age of the concrete at the time of
loading.

If concrete is loaded at an early age, its long-term deflections will be
greatly increased. Excessive deflections in reinforced concrete structures can
very often be traced to the eatly application of loads. The creep strain afier
about five years (after which creep is negligible) may be as high as four or five
times the initial strain when loads were first apiolied, seven to ten days after the
concrete was placed. This ratio may only be two or three for loads ﬁvhen the
loads were first applied, three or four months after concrete placement.

Because of the several factors mentioned, the magnitudes of long-term
deflections can only be estimated. The ACI 318M-99 Code states that to
estimate the increase in deflection due to these causes, the part of the
instantaneous deflection that is due to sustained loads may be multiplied by the
empirically derived factor A and the result added to the instantaneous

deflection.

_ ¢
A= 1450 p' 3-7)

Where:

_ i;' = time-dependent factor that may be determined
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from Table (3.1)

| p' = ratio of compression steel = A,/bd
| A = area of compression steel

b = width of cross section

d = effective depth of the cross section

The full dead load of a structure can be classified as sustained load, but
the type of occupancy will determine the percentage of live load that can be
called sustained. For an apartment house or for an office building, perhaps
only 20% to 25% of the service live load should be considered as being
sustained, whereas perhaps 70% to 80% of the service live load of a warehoﬁse
might fall into this category (McCormac, 1986).

Table 3.1. Time factor for sustained loads *

Duration of sustained load Time-dependent factor ¢
5 years or more 2.0
12 months 1.4
6 months 1.2
3 months 1.0

*ACI 318M-99, Table 9.5.2.5

3.4.5 Practical complications

The ACI Code procedure covers the simplest possible case, an immediate
sustained load and its time effect, plus a later live load regarded as transient.
The designer will recognize practical complications. How much will the
immediate deflection and time effects be increased by other cracking induced
by normal construction loading? Would not much of the time effect be based

on cracking that goes with the normal full live load, even if such loading is
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itself transient? When live load is heavy, does this not imply manufacturing or
storage usage, where much of this live load causes creep starting after the early
initial period, which means this portion of the creep starts on an older concrete?
For the heavy live load case many complications are to be expected.
Particularly it is important to note that in the long run the dead load deflection
becomes that based on the maximum cracking condition plus any accumulated
time effects. Hence, eatly smaller calculated deflections are useful only for
evaluating the maximum increase in deflections which partitions must accept
and evaluating time effects. Early construction loads or transient live loads will
induce cracking which lowers I, even where it is not apart of the sustained load.
It appears that the code procedure might give an overly precise value of the
eatly I, one wﬁich may well be too high in view of the actual physical

complications (Ferguson, 1973).

3.5 More Accur_ate Methods for Calculating Deflections

The report of ACI Committee 435 gives a summary of methods available -

for calculating deflections and comparing their accuracy (Park and Paulay
1975). The ACI Code method may normally lead to sufficient accuracy for
design purposes; if accuracy greater than +20% is required, however, a more
comprehensive analysis could be carried out. Such an analysis can only be
justified if experimental data are available for the modulus of rupture and the
modulus of elasticity of the concrete, and for the shrinkage and creep

characteristics of the concrete in the environment in which the member is in

f Th
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service. Some suggestions of ACI committee 435 for more accurate
caloulations of immediate deflection, and methods due to Branson for
calculating the additional long-term deflections due to creep and shrinkage, as
shown below.
3.5.1 Immediate deflections

Almost all beams designed as simply supported spans have some restraint
against rotation at the ends. A small moment will reduce the central deflection
significantly. Therefore, sﬁme assessment could be made of the degree of end
restraint available from elements such as masonry walls and concrete topping
and included in the deflection calculations.

The modulus of rupture and the modulus of elasticity for the deflection
calculations could be obtained from the concrete used for the structure. For
example, the modulus of elasticity could be calculated from the average
measuréd cylinder strength rather than from the specified minimum cylinder
strength used in the design. The modulus of rupture may exceed the value
recommended by the code for use in calculating M,, and the average measured
value could be used.

Also possible is more realistic assessment of the manner in which non-
structural elements, particularly walls, affect structural behavior. For example,
partitioﬁ walls may span from end to end when the structural member deflects,

beams may come to rest on walls below, and infill walls may stiffen frames

considerably.

hts Reserved - Library of University of Jordan - Center of Thesis Deposit

All Ri



30

Flanges of T beams on the tension side should be included in moment of
inertia calculations.  Also, the transformed area of reinforcing steel in
uncracked sections should not be ignored, particulariy in the case of heavily
reinforced members, because it can increase the moment of inertia
significantly.

In continuous members a more realistic assessment of the flexural
rigidity along the member could be made, rather than simple averaging of the
negative and positive moment of flexural rigidities.

Shear deflections should be accounted for when thin-webbed members
are used, or when a large proportion of the shear stresses is resisted by web
reinforcement resulting in diagonal tension cracks under service load
conditions.

3.5.2 Long-Term deflections due to concrete shrinkage

Concrete shrinkage causes a shortage of the member that is resisted by the
reinforcing steel, inducing compressive stresses in the steel and mainly tensile
stresses in the concrete (Park and Paulay, 1975). Shrinkage deflection is not
usually calculated separately but is combined with creep deflection, according
to ACI 318M-99 Code procedures. Equations for curvatures due to shrinkage
for uncracked and cracked sections can be developed using elastic theory.
However, such solutions are not exact because of the difficulty of dealing
accurately with the effects of concrete creep.  Also shrinkage deflections are

normally of the order of 30% or less of the total deflections. Hence simplified

approaches suffice.
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3.5.3 Long-Term deflections due to concrete creep

Long-term deflections due to concrete creep are often greater than the
sum of the deflections from the other effects and therefore are of primary
interest. An accurate analysis including the effect of variable loading is
extremely difficult because of the need for data on the creep strain-time
characteristics of the concrete, and the loading history.. The rate-of-creep
method or the supetposition method may be used if such data is available.
Usually the analysis cannot be justified and a more approximate approach is
chosen.

One approximate method uses the effective modulus of elasticity of the
- concrete for calculating the immediate plus creep deflection. The modulus is
gi?en by EJ/(1+C,), where E; is the modulus of elastic.ity at the instant of
loading, and C, is the creep coefficient of the concrete. Since the creep
coeflicient C; is the ratio of the creep sirain to initial (elastic) strain, it is
evident that in this approach the deflection due to creep is equal to the
immediate deflection multiplied by the creep coefficient. However, this
approach is very approximate. Concrete creep under constant bending moment
results in a significant increase in the extreme fiber compression strain, an
increase in the neutral axis depth, an increase in the steel compressive stress,
and a decrease in thé concrete compréssive stress. The tensile stress in the steel

increases slightly because the lever arm is reduced (Park and Paulay 1975).
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4. Thesis Approach and Parametric Study

4,1 General

As was mentioned before and according to the current codes, the
immediate deflection of a cracked member can be calculated using constant
effective moment of inertia I, given by an empirical equation (Eqg. 3.1). A
cracked member behaves, in general, as a member of variable cross section,
because the rigidity is much reduced in the cracked zone and the amount of
reduction varies along the span. The value of initial strain in concrete €, and
curvature v at a section depend on the value of bending moment M, as well as
the croés-sectional properties. For this reason, it is impossible to find empirical
equations that give constant cross-sectional properties to allow treating the
member as prismatic. Such an equation will be accurate for a particular shape
of bending moment diagram and will be ertoneous for others. The prediction
of immediate and long-term deflections of reinforced concrete members using
the equation of the current ACI Code hence, is accurate in some cases, while in

others, the predicted deflections can be largely in error. Examples of such
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4.2 Thesis Approach

The main objective of this research is to calculate immediate deflection of
reinforced concrete beams by determining the moment of inertia of three zones
along the beam depending on the moment diagram under service load by
considering the following zone types:

- small moment, Where M/M,, < 1
In this case the beam section is uncracked and I = I,

- Intermediate moment, where 1 < My/M,, < 3
In this case the beam section is moderately cracked and I = L.

- High moment, where My/M,; >3
In this case the beam section is cracked extensively and [ =1,

Then the calculated immediate déﬂections by using variable moment of
inertia along the beam with the values of déﬂections calculated based on ACI
318M-99 Code and with experimental results if it is available.

- A tailored software was used to carry out these calculations {Appendix B).

The selection of design parameters should be wisely picked to obtain

tangible trends.
4.3 Design Parameters

The same set of design variables are used for some studies to enable a

meaningful comparison of the results, while others had different variables to

assess the effect of these variables in the result.
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4.3.1 Choice of beam type

Several beam types were used in the studies: simply supported beam,
continuous beam with two and three spans and cantilever beam.
4.3.2 Choice of beam cross-section

Studies consider rectangular cross-section and T cross-section, figure

(4.1) shows these sections.

——
“—I-d/
Ag
As
—

(a) Rectangular cross-section

(b) T cross-section

Figure(4.1) Beam cross sections (a)Rectangular cross-section (b)T cross-

section
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4.3.3 Types of supports

Except for cantilever beams where one end support is fixed, all supports
in other beams are hinged.
4.3.4 Materials

Seyeral values of conctrete compreesive strength (21, 28, 35) MPa and
steel yield strength (300, 420) MPa were used in studies to show the effect of
these variables on immediate deflection values.

4.3.5 Steel reinforcement

Several ratios of tensile and compressive steel reinforcement were used,
tension steel ratio p = (0.25, 0.5 , 0.75) puax and compression steel ratio p* =
(0.25, 0.5, 0.75) p. These ratios were used at the high moment regions.

4.3.6 Loading

Loads are assumed to be uniformly distributed along the beam length for
all _studies, the values of dead load (10, 15, 20)kN/m and live load (25, 35,
45)kN/m.

4.3.7 Span length

Span length were used (3, 4)m for simply supported beams, (3, 4, S)m for

2-span continuous beams, 5m for 3-span continuous beams and 3m for

cantilever beams.

4.4 Cases of Study

Four studies are performed as applications on the immediate deflection of

reinforced concrete beams. These studies consider variable beam cross-section,
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beam type, load level, span lengin, concrete compressive strength, steel yield
* strength and ratios of tensile and compressive steel. Study number four had an
experimental results to compare it with thesis and ACI values of immediate

deflection.

4.4.1 Study number one

The purpose of this stqdy is to detect the trends in immediate deflection
associated to the followirig:
- 2-span continuous Beam '
"- Tension steel content p=(0.25,0.5,0.75) pmax -
- SpanlengthL =(3,4,5)m
- Concrete compréssive strength f,” =28 MPa
- Steel yield sfrength f,=420 MPa
- Uniformly distributed dead load = (10, 15, 20) KN/m
- Uniformly distributed live load = (25, 35, 45) KN/m
- Six cases in this study, the ﬁrét three cases _for rectangular crbss—section. _
and the remg_ining cases for T cross-séction |

Tables (4. I-a to 4.2-c) show the variables used in this study.
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4.4.2 Study number two

- The purpose of this stady is to detect the immediate deflection behavior

associated with the following:
- Simply supported beam
- Tension steel content p = (0.25, 0.5, 0.75) Prnex
- SpanlengthL =4, 5) m
- Concrete compressive strength £, = (21, 28, 35) MPa
- Steel yield strength £, = (300, 420) MPa
- Uniformly distributed dead load = (10, 15) KN/m
- Uniformly distributed live load = (25, 35} kN/m
- Four cases ini this study, the first two cases for recta'ngulér cross-section

and the remaining cases for T cross-section

Tables (4.3—a to 4.4-b) illustrate the variables used in this study.
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4.4.3 Study number three

This study has illustrated the effects on immediate deflection by using the
following variables: | |

- Beam Types (simply supported, 3-span continuous, cantilever)

- Tension steel ratio p = (0.25, 0.5, 0.75) pmax

- - Compression steel ratio p” = (0.25, 0.5, 0.75) p
- Span length L = 5m for simply supportedland 3-span continuous beams, L
= 3m for cantiliver bear

- Concrete compressive strf;ngth f,” =28 MPa

- Steel yield strengih £, = 420 MPa

- Uniformly distributed dead load = (10, 15) kN /m

- Unifc;rmiy distributed live l.oad'= (25, 35) kKN/m

- Six cases in this study, the first three cases for rectangular cross-section

- and the remaining cases for T cross-section

Tables (4.5-a to 4.6-c) show the variables used in this study.
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4.4.4 Study number four

This study had an experimental results compared to immediate deflection

values calculated by thesis approach and ACI 318M-99 provisions, by using
che following; |
" - Simply supported beam

- Span length L =2.5m

- Concrete compressive strength £," = 31.2 MPa

- Steel yield strength £, = 270 MPa

- Variable uniform distributed load

- Square cross-section

Table (4.7) iHlustrates the variables used in this study.

—— -‘Er
. A

W=VYarlable E[[[[B]% . » d

W =variable y _,| Ag
) r [aL"in] '

. Table 4.7. Experimental data used in study number four
__Simply supported beam (square cross-section) L=2.5m *

1, (MPa) I, (MPa) (b (mm)ld (mm) h(mm)] As (mm?)! A’ (mm?)
312 | 270 | 200 | 150 | 200 | 400 | 80

* (Ghali, 1993)
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5.Results and Discussion

5.1 Introduction

Concrete.deformation is probabilistic and our knowledge is imperfect to
even provide mean value functions and variance. Calculations can, at best,
provide a guide to probable acﬁxal deflections. This is because of fhe un-
certainties -regarding material properties, effects of cracking and load history
for thé member uﬁder consideration.

Because of these reasons, a method is propo_sed to give better pfebision
in the calculations., as long as théy give reasonable'. results compared With the

. experimental data and the ACI provisions.
5.2 Calculation of Deflection

The method of this thesis is used to calculate immediate deflection, by

using variable moment of inertia across the beam and the results are compared B

with ACI provisions and experimental results.
5.3 Results

3.3.1 Results of Study number one
Two span continuous beams under uniform distributed load were studied, -
for both rectangular and T cross-sections the variables were (beam length, load

level and tension steel ratio).
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A rectangular cross-section is illustrated in Tables (5.1-a, 5.1-b, 5.1-¢)

which shows that the immediate deflections specified by the ACI provisions

and thesis approach- were almost identical, with the ACI provisions being

conservative in all cases.

For T-sections, it is noticed from Tables (5.2-a, 5.2-b, 5.2-¢c) that the
immediate deflections calculated by the ACI provisions were more
conservative than thesis approach for all tension steel ratios p = (0.25, 0.5,
0.75)pmx.

Tables (5.1-a to 5.2-c) illustrate the results of study number one,

ts Reserved - Library of University of Jordan - Center of Thesis Deposit
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5.3.2 Results of Study number two

) Simply supported -llﬁle-all-ﬁls und.ér.un.ifbrm distributed load were studied for
both rectangular and T cross-sections. The variable parameters were (beam
length, load level, concrete compression strength and steel yield strength). For
a rectangular cross-section, see Tables (5.3-a, 5.3-b), the values of immediate
deflections calculated by the ACI provisions were larger by a small amount
than the values of thesis aﬁproabh. For T cross-sections, see Tables (5.4-a, 5.4~
b), the AC_I provisions with regérd to immediate deflections and thesis
approach give almost jdentical results for all cases.

Tables (5.3-a to 5.4-b) show the results of study number two.




1IS00ed S1Sey JO BIUaD - Uepior Jo AJiSeAIUN JO AkeldIT - peAessY SIUDIY ||V

uedspiw Je vonosyad |

89'9 298 €e’L 8.9 _ 6L6L Ve 1901
09L 551 6E6 19’8 £EVT _ T6E | 9901
8L'9 zL'9 or'el €6°EL G1'GE . VEr | §I01
€08 6672 06'L 06L | loel 0vE 8GOl
699 999 9901 €z 0l 0€LZ 6GE €901
956 €66 0671 01L¥l 3 £6E 1201
866 88'6 Z5y 90y 99z €8T i - €G.
118 798 €8'S 8LS 0091 96z | 86l
012 1072 ve'8 vll 872 e | . 59/
78’8 6.8 60°S z8v 8L'L} 19T 1'6L

Qg 108 967/ €9 16'G e | lee GGl
Zr'9 1€°9 8L'6 158 88°61 L6 zol

() [ Feq (W), sisey L 1oa | (W) o3 | () 01,71 | (ww)op."l [ (Wi (W NI

W= (Uojoas-88010 Jejnbueoal) wesq pspoddns za_E_w_ :
(1 @sE9) oM} JaquUNu APNIS JO SYNSSY e-¢°G S|ge L

w.¢q ”
_ : ]
% L i _
q F A N
stcmE A = O F
— i G R




11SO0ed S1SeY 1 JO BIURD - Ueplior JOo AJISeAIUN JO AkeldIT - peAessy SIUDIY ||V

o uedspul 1e uonoayad L
mo.: ow..rr ww‘.m_. wv.m_‘ mwﬂvm m.wm w.hm_‘

866 €66 0L'L1 6991 - VLTV Y 2891
v6'L 98’/ 16°GT 8/°€C l0v9 - L'v9 G0/L |
166 V66 VLGl 1LS5E | 1yee I'éF £ /9) 7
888 988 2861 286! 7 0’z 289l |
169 ¥6'9 vV'62 €€'8C S L85 6691 _ |
. _ ] |
€0cl 96°C) 858 108 €022 0y v'6ll |
€01l GGl z80l e0'0l 5972 1Ty 021 7
0v'6 LE6 Y9Gl 0¥l yor | 9y g1zl
Z811 YR g Zv'6 6161 v € . 681l
pp oL 6E°0) L0ZL 10Tk ECVT TBE . 1’611
3 €8 9C'8 191 A Gl'Ge - vEY 1Lzl
(ue) [V eq [ (ww) sisau Jad | (Wi 01,% | (w0121 | (W) 015 |~ (UrNy°N (W NS)°

wg=" {(uonoas-ssoid Ie|nbueIdal} eaq psuoddns Ajdiig
(Z eseD) OM] JSGUINU APNIsS Jo sjnsey g-¢°G 8lqe L

¥
P o _
9 _ G _
_ I | el s = T A0 B E O I .;....,q
n_ . m_ﬁ&.m“wuw.n.__.ﬂ.w.h.___..w i i O W




1S00ed Sisey 1 JO BILD - Ueplof Jo AlSBAIUN JO AeiqlT - paAesay SIYOIY ||V

uedspiw 32 uonoaed |

18'9C 1892 8lL¥ 8L'¥ 86§ €€l 961l
TBVe 26'vC €0's £0'S 1072 ! 86l
8L'lc e 98’9 98°9 596 Yl e 0Ck
6LTC 8LCT 16 L&Y zes ¥l v6lLl
€8°0C €9°07 oe |- 109 £e9 ¥l _ L6}
0T'LL oTLL vv'8 w8 | L8 €El L0Z)
(ww) 10v'1eq [ (ww) siseyl3=q () oF.8r] (wuw)0l.0l () 01y°| (W ™)°IN (W)

wg=" (UOHO8S-$S0I0 1) weaq weaq pspoddns Adwis
(4 @5e0) om Jequunu Apms 10 SYNSSY 4-p'S s|qel

T a—

»._”D.d.ﬁw.m..uﬁm._b_ i S O T T

0,_”_“..%.&.“..__..%5 Ei W W F W

S _ :
€061 €06l BET - BET ov'¥ T v'GL
zT LY ZeTlL v6'C V6T 82'G 1 _ §6.
1061 L0°GL 68°C 63€ 669 oli 85/
£5°91 €591 k4 -~ €L7T. T I8¢ X . €61
99y 90¥1 Sr'e S¥'e 89¥ €0} ¥GL
SyZh A 0LV 0Ly 9z9 80l LS.

o), [ov $5a | () sissu 11eq | (W01l T R RTUTV T D (W (W N

wiy=" (uoNP9s-$3010 .D_Emmn_ weaq payoddns Aiduwilg

5 (c osed) oMy Jaquunu Apnis JO SYNSaY B-¥'G agey.

v T

! apgEmms =T
e g =T A4

i
-}
ra
N
e
e
o

h 7




66

5.3.3 Results of Study number three

_ ' load, for both rectangular and T cross-sections. The variable used were

(tension steel ratio, compression steel ratio, load level and types of beam).

For a rectangulér. cross-section, see Tables (5.5-a, 5.5-b, 5.5-¢), case 1
studied for a 5m simply supported beam. The values of immediate deflections
determined by the ACI provisions and thesis approach were very close in all
cases with somewhat larger values in the ACI provisions.

Case 2 studied three equal-span, continuotis bgam, with a span length- of
Sm. For the exterior spéms, the ACI provisions were more conservative with
regard to immediate deflections than the thesis approach for the case o_f tension

steel ratio p = 0.5pna- They were unconservative for the case of tension steel

© ratio p = 0.75pmax For the midspan the values of immediate deflections by the

ACI provisioﬁs and thesis approach were very close in all cases.
Case 3 studied a 3m cantilever beam. The re‘si;lts showed that the ACI
provisions were more conservative than thesis approach with regard to the -

immediate deflections.

Three types of beams were used in tﬁis stu_c_ij; under uniform distributed ©

For T cross-section, sec Tables (5.6-a, 5.6-b, 5.6-c), case 4 was stjudiéd K

for a 5m simply supported beam under uniform distributed load, with one load
level. The results of immediate deﬂgctions calculated by the ACI provisions
and thesis approach were almost identical in all éases.

Case 5 studied three equal-span, continuous beam, with a span lengm of

5m. As in case 2, for the exterior spans, the ACI provisions were more

- Librar
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conservative with regard to immediate deflections than the thesis approach for

the case of tension steel ratio p = 0.5pmax. They were unconservative for the

case of tension steel ratio p = 0.75pma For the midspan the values of |
immediate deflections by the ACI provisions and thesis approach were very
close in all cases.

Case 6 studied a 3m cantilever beam. As in case 3, the results showed

that the ACI provisions were more conservative than thesis approach with

regard to immediate deflections.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit
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5.3.4 Results of Study number four

A simply supportedbeam,underumfonn loaél,havmg a25m span,waé B

used in this study, see Table (5.7), and compared with the results of an
rxperimental study by Ghali, 1993. The variable used was load level. It was
noticed that ACI provisions were more conservative than thesis approach with
regard to immediate deﬂections. B;:)th of them have larger values of immediate
deflections than, thé experimental results. In other words, the ACI provisions
and thesis approach were conservative with regard to immediate deflections.

Table (5.7) shows the results of study Number Four.

——
T T -‘—di
w=varioble [¥J ¥4I 4394 Ae |
A A 1 14
}"‘ 2.5m "‘ Ag il

Table 5.7. Results of study number four
Simply supported beam-comparison of experimental
results with ACI and thesis (L=2.5m)

M, (kKN/m) Mg /My Def.Thesis(mm) | Def ACI[{mm) | Def.Exp.(mm)
' i1l 1.22 1.32 1.30 -
1.36 2.15 2.29 2.10
1.60 - 320 - 3.33 290
52 - 1.98 | 4.90 ' 5.01 - 430
247 7.09 7.10 5.90
2,72 8.02 ~ 8.09 . 6.80
3.21 10,62 10.68 - 8.40
3.70 1231 12.34 10.10

ed - Library of University of Jordan - Center of Thesis Deposit
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5.4 Discussion of Results

The following is observed
1. Simply sul;ported beam
a) Rectangular cross-section
There are some differences between the ACI provisions and thesis
approach with regard to immediate deflections. The ACI provisions were more
conservative thaﬂ thesis approach in all cases. See Tables(5.3-a, 5.3-b, 5.5-a).
b) T cfoss-section: |
The values of immediate deflections calculated by ACI pfovi;sions and
thesis. approach were almost identical in all cases. See _Tables (5.4-a, 5.4-b,
5.6—a.).
For both rectangular and T cross-sections, it-was noticed that the beam
may be divided intd two zones. |
ane 1- M,/M,, <. 1. , 50 that I, was used. |
Zone2- - 1s MyM;<3 | ,So:thaf I. was used.
This division according to thesis approach gave smaller immediate deflections
than ACI provisions. | |
2. Two span cont_i_nﬁous beam:

-a) Rectangular cross-section

The ACI provisions were more conservative than thesis approach with

regard to immediate deflections. It was noticed that the beam may be divided

into two zones.

Zone 1- MM, < 1 , $0 that I, was used.

hts Reserved - Library of University of Jordan - Center of Thesis Deposit
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Zone 2- 1< MM, <3 ,Sothatl, was used.

This division according to thesis approach gave smaller immediate

deflections than ACI provisions. See Tables (5.1-a, 5.1-b, 5.1-¢).
.b) T cross-section

Immediate deflections calculated by ACI provisions were 1more
conservati?e than thesis approach in all cases of p = (0.25, 0.5,0.75)pmax. See
.Tables (5.2-a, 5.2-b, 5.2-c).

- It was noticed that the beam may be divided into two zones.

Zone 1- Mo/M <1 , sothatI,; was used.

Zornie 2~ | 1 €« MJ/Mg €3 , Sothat [, was used.

This division according to thesis appfoach gave smallér immediate
deflections than ACI provisions.
- 3. Three sjaan continuoﬁs beam:

The results of rectangular and T—croés-sections had the Sla'me tfend. ACII
provisions for deflections were more. con’servﬁtive in the caée of p = 0.5pmax
and unconservative in the case of p = 0.750max. See Tables (5.5-b, 5.6-b).

T cross-sections in bontinuous beams have a pecﬁliar behavior. They
Behave 2s T-Isecti_ons in positive moment regions and as rebtangular in negative
moménf regions. As a result, continuous bgam have Itw<.) cracking morment
values. In all cases of this .study, it was observed that the crackmg'moment ofa
~ T-sections was lérger than the cracking moment of a rectangular seotiqn.

TFor positive moment regions, the beam was divided iﬁto two zbnes.

Zone 1—_. M/M, <1 , 50 that I, was used.

All Ri
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6.Conclusions and Recommendations

6.1 Conclusions

It is normal to expect differences between the results obtained from ACI

provisions and thesis approach because they use different procedures.

6.1.1 Simply supported beams

The deflections of ACI and thesis were very close for rectangular sections -
and almost identical for T-sections.
6.1.2 TWO span continuous beams

The deflections of -tilesis were smaller than ACI values for all cases o_f
fectangular and T-sections.
6.1..3. Threé spén conﬁnuous’ beams

The déﬂeétibns of thesis were smaller than ACI values for é.ll_cases of
rectanguiar é.hd T-sections, except when p = 0.75p.x where thesis déﬂections
were larger than ACI, for rectan gular or T—s_ection'é.
' 6.1.4 Can'ti'le'.ver l.)e-ams

The deflections of thesis were smaller than ACI values for all cases of

All Rights Reserved - Library of University of Jorda

rectangular or T-sections. The difference beMeen thesis and ACI was more

pronounced than cases of simply supported, two or three span continuous

beams.
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6.2 General Observations

1. An increase in tension steel ratio decreases the depth of the cross-section

consequently increasing the deflections.
2. An increase in compression steel ratio slightly decreases the defiections.
3. Anincrease in steel yield strength generally increases the deflections.

4, A change in concrete compressive strength has an insignificant effect on

deflections. | |

5. An increase in span length increases the deflections.

| 6.3 Recommendations

>t is recommended that more studies be done considering cases of
concentrated loads, non uniform loads and other load possibilities.

»>It is important to do more studies to verify the cases where ACI values

were unconservative compared to thesis . Those cases which were -

repeatédly checked but showed this trend warrant some attention.

>t is récomniended that thesis approach be modified to include lonth'erln

deflections and the results corripared to ACI.

hts Reserved - Library of University of Jordan - Center of Thesis Deposit
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Table A.5-b Design of rectangular cross-section and reinforcement of study number three (case 2)
3-span continuous beam (L= =5m)
B M M + ( Exterior Span) M + (Interior span)
bmm)| gimm) | Hmm} | Por | P/Dimax p p/p P - |Admmd) | Almm eg,;z.a?,_,z.é p P | Admm?) | Ato®) {OMokN.m| mam | o {agmmd| oMaN.m M{ki.m)
025 | 0.003 287 | 1421
380 | 435 6.5 0011 0.5 0.005 | 1148 | 574 | 1422 [141.0| 0.008 G.004{ 870 400 108.6 (1057 [0.008 270 | 36.0 mm.%
300 . 0.02 0.75 { 0.008 861 | 142.3 _ ,
0.25 | 0.004 359 {141.9 ]
300 { 375 0.75 {0.016 0.5 0.008 | 1434 | 717 | 142.7 [1395 0.012 |0.006| 1060 250 107.2 | 104.6 [0.004 330 36.2- | 349
0.75 | 0.012 1076 § 1432 .
0.25 | 0.003 343 | 2034 . .
430 | 505 0.5 |0.011 0.5 0.005 {1371 { 685 {204.4 {199.0! 0.008 0.004] 1020 550 153.2 | 149.2 {0.003 430 68.0 497
300 0.02 0.75 | 0.008 | - 1028 | 2045
0.25 | 0.004 424 | 1899 .
356 | 430 0.75 1001605 |0.008 {1697 { 849 | 201.8(197.1! 0.012 0.007; 1250 | 600 152.1 | 147.8 {0.004) 390 | 50.7 49.3
0.75 | 0.012 1273 | 2027 : .
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Appendix B

Computer Program Properties

This tailored program which is used to catry out the immediate deflection

 calculation of reinforced concrete beams has several properties.

The software was developed using visual basic program.. Previously

developed models and procedures were modified and used to integrate the

software. Only the procedures required to conduct the imrﬁediate'

deflection calculations were de{reloped.

- The software calculates the deflection, using virtual method, at the mid
span of (simple beams, continuous beams) and at fixed end of cantilever
bcams.

Elastic analysis_ using stiffness approach was used.
The p’rqgram us,és numerical integration, based on trapez;oidlal' m‘ethod; to
conduct the virtuél_ work procedure in calculating deflection.

 It considers -simply supported beams, continuous beams with or Without
overhangs and cantilever beams, |

It considers T and rectangular sections in both analysis and deflection

calculation.
It considers uniformly distributed load over the span length.
It considers tension and compression steel in the calculation of deflection,

It can divide the element into a huge number of cross sections, according

-to the user needs.

hts Reﬁefved - Librér of University of Jordan - Center of Thesis Deposit

All Ri
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S —lt,
n Spans

v

Call section properties (hy,
h, do, A, Als, d, by)

¢ .

Call “ACI Deflection”
procedure

v

Store M, Iy: Lo Ko

y

IIc avg:Ie(Ssz)

I avg = le (8,1)

Yés

Ie = 0. Ie(s,2)+0.15 1, (s,3).

P Toag=0.85*
I(s:2)40.15 L (s,1)

Leavg = 0.7* Ie(s,2)
+0.15(Te (s,1)+ L (s,1)

.ved - Library of University of Jordan - Center of Thesis Deposit

- Figure B.1 Flow chart of computer program




o8

Initialized

Area=(bmi + bmi— 1)/2 *
(bmi + bmi— 1) /2 * dx

|BM/M Yes Leeg=1g(S,Prop Sec)

L™l (S,Sec Prop) ™

) Ireq=Ie lavg. (S)

b

Thesis® = Thesis+Area/( I ue *Ee)
ACIS = ACIS+Area/( L *Ee)

:

Store ACI8 and Thesisé

hts R%erved - Library of University of Jordan - Center of Thesis Deposit

Figure B.1 Flow chart of computer program (continued )
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